Bitter Principles of *Picrasma ailanthoides* Planchon. Nigakihemiacetals A and B, and Nigakilactones G and H.

Tatsushi Murae, Tôru Ikeda, Takahiko Tsuyuki, Tadaaki Nishihama and Takeyoshi Takahashi

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo (Received June 15, 1970)

In addition to the previously reported nigakilactones A, B, C, D,¹⁾ E and F,²⁾ four bitter principles (nigakihemiacetals A and B, and nigakilactones G and H) have been isolated from *Picrasma ailanthoides* Planchon (= P. quassioides Bennett). Recently, isolation of picrasin B³⁾ and A⁴⁾ from the same plant was recorded by Hikino et al.

Nigakihemiacetal A, mp 262—263°C, $C_{22}H_{34}O_7$, M^+ 410, $[\alpha]_D+20^\circ$ (c 0.22, in EtOH), $\lambda_{max}^{\text{meor}}$ 272 nm (ε 5800), IR (nujol): 3560, 3470, 3360, 1668, 1634 cm⁻¹, PMR (Table 1), is a new bitter substance which has a hemiacetal instead of a lactone grouping. On oxidation with Ag_2O , this hemiacetal gave nigakilactone F^2 (I, R_1 =OH, R_2 =H, R_3 =H, R_4 =O). Thus, structure I (R_1 =OH, R_2 =H, R_3 =H, R_4 =OH, H) is given for nigakihemiacetal A.

Spectral data of nigakihemiacetal B, mp 230.5—231°C, $C_{22}H_{30}O_6$, M^+ 390, $[\alpha]_D+20^\circ$ (c 0.21, in EtOH), $\lambda_{\max}^{\text{moor}}$ 256 nm (ε 11400), IR (nujol): 3400, 1690, 1674, 1640, 1621 cm⁻¹, suggest that this substance would be neoquassin. Indeed, nigakihemiacetal B was shown to be identical with neoquassin⁵) (II, R=OH, H) by the formation of quassin⁵) (II, R=O) on oxidation of this hemiacetal with Ag₂O.

Nigakilactone H, mp 274.5—275.5°C, $C_{22}H_{32}$ - O_8 , M+ 424, [α]_D+67° (c 0.14, in EtOH), $\lambda_{\max}^{\text{moor}}$ 271 nm (ϵ 4260), IR (nujol): 3450, 1725, 1675, 1640 cm⁻¹, is a new bitter principle containing one hydroxyl group more than nigakilactone F²). In the PMR spectrum, C_9 -H (1H, δ 2.05) resonates as doublet (J=11 Hz), C_{11} -H (1H, δ 3.96) as quartet (J=11; 9 Hz), C_{12} -H (1H, δ 3.02) as

doublet (J=9 Hz), C_3 -H (1H, δ 5.51) as doublet $(J=2.5~{\rm Hz})$ and C_7-H (1H, δ 4.56) as multiplet. These observations are best interpreted on the basis of the skeletal structure of known nigakilactone F^{2} (I, $R_1 = OH$, $R_2 = H$, $R_3 = H$, $R_4 = O$). Nigakilactone H, when treated with Na₂Cr₂O₇, afforded a ketone, mp 161—163°C, C₂₂H₃₀O₈, M+ 422, $\lambda_{\text{max}}^{\text{MoOR}}$ 264 nm (ε 5920), IR (nujol): 3450, 1720, 1690, 1625 cm⁻¹. The PMR spectrum shows signals due to C_9 -H (1H, δ 2.61, singlet), C_{12} -H (1H, δ 3.38, singlet), C_{3} -H (1H, δ 5.42, doublet, J=2.5 Hz) and C_7 -H (1H, δ 4.53, multiplet); no signal due to C_{11} -H is observed. In the PMR spectra of nigakilactone H and its ketone, a signal due to two protons on C₁₅ appears as singlet at δ 2.67 and at δ 2.89, respectively. This shows that the C_{14} -carbon is tertiary, and leads to the location of an extra hydroxyl group on C14 for nigakilactone H. Thus, nigakilactone H and its ketone should be represented by I (R₁=OH, R₂=H, R₃=OH, R₄=O, for nigakilactone H; R_1 , $R_2=O$, $R_3=OH$, $R_4=O$, for its ketone) except for absolute configuration.

TABLE 1. PMR SPECTRAL DATA (δ in ppm,* in CDCl3)

	Nigakihemiacetals		Nigakilactones	
	Ā	В	н	F
s-C <u>H</u> 3	1.11 d	1.07 d	1.15 d	1.11 d
	J = 7	J=6	J = 7.5	J=7
t-C <u>H</u> ₃	1.20 s	1.05 s	1.27 s	1.22 s
	1.34 s	1.49 s	1.35 s	1.46 s
	1.44 s		1.50 s	1.46 s
C=C-CH3		1.83 s		
H-C-OCH ₃	$2.98 \mathrm{d}$		$3.02\mathrm{d}$	$3.03\mathrm{d}$
	J=9		J=9	J=9
-O-C <u>H</u> 3	3.58 s	3.55 s	3.63 s	3.58 s
	3.69 s	3.61 s	3.77 s	3.73 s
<u>н</u> -С-ОН	$3.52\mathrm{q}$		3.96 q	$4.00\mathrm{q}$
	J = 11; 9		J = 11; 9	J = 11; 9
С				
с-сн-о-	3.88 m	3.95 m	4.56 m	4.13 m
C=CH	5.40 d	$5.25\mathrm{d}$	5.51 d	$5.43\mathrm{d}$
_	J=2.5	J=2.5	J=2.5	J=2

^{*} internal standard; TMS

Spectral and some chemical data of nigakilactone G, mp 305—305.5°C, $C_{28}H_{34}O_8$, M+ 474, $[\alpha]_D+41°$ (c 0.29, in EtOH), λ_{mon}^{mon} 271 nm (ε 5300), IR (Nujol): 3430, 1778, 1734, 1678, 1640 cm⁻¹, suggest that this substance would be identical with picrasin A⁴) (III), whose structure was recently determined.⁴) Confirmation of this identity is under way.

¹⁾ T. Murae, T. Tsuyuki, T. Nishihama, S. Masuda and T. Takahashi, *Tetrahedron Lett.*, 1969, 3013.

²⁾ T. Murae, T. Ikeda, T. Tsuyuki, T. Nishihama and T. Takahashi, This Bulletin, 43, 969 (1970).

³⁾ H. Hikino, T. Ohta and T. Takemoto, *Chem. Pharm. Bull.* (Tokyo), **18**, 219 (1970).

⁴⁾ H. Hikino, T. Ohta and T. Takemoto, *ibid.*, **18**, 1082 (1970).

⁵⁾ Z. Valenta, S. Papadopoulos and C. Podešva, Tetrahedron, 15, 100 (1961).